The form of $p(\eta, T)$ obtained in the previous section [Eq. (10)] is verified by the plots in Figs. 3(a)-3(c). The validity of Eq. (5) for τ_{enc} is assumed. The simple unimolecular reaction model is thus seen to account in a satisfactory way for the exchange probability parameter $p(\eta, T)$. Interestingly enough, it is empirically found that $J_0 \tau_{enc}$ for radical-radical exchange is strongly solvent-dependent, and that for the same solvent (methyl cyclohexane) $J_0 \tau_{\rm enc} \gg J_0' \tau'_{\rm enc}$. The values of $J_0 \tau_{\rm enc}$ are found to be $1.01 \times 10^3 \eta/T$ (*n*-pentane), $2.81 \times 10^{3} \eta/T$ (propane), $\gtrsim 1 \times 10^{3} \eta/T$ (methylcyclohexane), while $J_0' \tau'_{enc} = 0.19 \times 10^3 \eta/T$ (methylcyclohexane). Viscosities are expressed in centipoise.

From the empirical values of $J_0 \tau_{enc}$ and Eq. (5) with $\lambda = 3 \times 10^{-8}$ cm, J_0 was calculated to be 1.6×10^{11} \sec^{-1} in *n*-pentane, 4.5×10^{11} \sec^{-1} in propane and $\gtrsim 1.6 \times 10^{11}$ sec⁻¹ in methylcyclohexane. $J_0' \tau'_{enc}$ is about an order of magnitude smaller than the corresponding quantity for radical-radical exchange. It is expected, however, that λ' , the interaction radius for the oxygen molecule, is also appreciably smaller. These values of J_0 are about an order of magnitude larger than the value estimated by Pake and Tuttle² for polycrystalline DPPH (10¹⁰-10¹¹ sec⁻¹).

ACKNOWLEDGMENTS

We wish to thank Professor N. Bloembergen for the loan of the high-pressure cavity and bomb. We are grateful to Dr. A. K. Hoffman for a sample of DTBN.

This work was supported by the Advanced Research Projects Agency (Department of Defense) through Contract SD-88, and by a National Science Foundation Grant. We are grateful to both organizations for their support of this research.

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 41, NUMBER 11 1 DECEMBER 1964

Crystal Structure of Li₆BeF₄ZrF₈†

D. RICHARD SEARS AND JOHN H. BURNS

Reactor Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

(Received 20 July 1964)

The crystal structure of LicBeF4ZrF8 has been determined by x-ray diffraction. The tetragonal unit cell, having a=6.57, c=18.62 Å, contains four formula weights; the space group is D_{4h} ¹⁰- $I4_1amd$. Discrete BeF_4^{2-} and ZrF_8^{4-} ions are connected by shared Li⁺ ions. The BeF_4^{2-} tetrahedron is quite regular with a Be-F distance of 1.57 ± 0.01 Å; the ZrF_8^{4-} dodecahedron has two independent Zr-F bonds of 2.05 ± 0.01 Å and 2.16 ± 0.01 Å, and deviates considerably from the shape predicted by theory.

INTRODUCTION

TIRCONIUM is known to occur as the central atom of a variety of complex coordination polyhedra, often bearing eight ligands arranged in dodecahedral or square-antiprismatic symmetry.1,2 Racah3 and Duffey⁴ have derived orbital strengths for these configurations using d^4sp^3 hybridization. Their calculations established no significant energy difference between the configurations, if isolated complexes are considered.

The configuration adopted in a particular crystal is therefore determined in part by external influences, such as ligand-ligand repulsions, constraints due to bonding between ligands, and packing requirements. Thus it is interesting to examine MX₈-type configurations in which, as in the well known Mo(CN)84- ion 5 the central metal atom is bonded to eight apparently equivalent monodentate ligands.

In an investigation of the phase diagram of the ternary system LiF-BeF2-ZrF4, Thoma et al.6 discovered a primary phase of composition 6LiF.BeF₂.ZrF₄. The stoichiometry and preliminary x-ray studies suggested the possible occurrence of complex octafluorozirconate and tetrafluoroberyllate ions in the crystal.

The coexistence of two discrete complex anions in a crystal is not common. But since it seemed likely in this compound, a crystal-structure analysis was carried out to examine in detail the configuration of the discrete

7rFs4- ion and bond distances

A single cry melt of stoicl 471°C. Neutro analyses indica the ZrF4 used a this Hf:Zr rat X-ray preces lished a tetrag 0.02, c = 18.62space group 141/amd. An However, an e obtained by a compound was volumes of the that the unit from which t 3.06 g cm^{-3} .

Photograph h21 reflections radiation and Spot densities by visual com strips. Of the comparison w the range of th values.

The $CuK_{\alpha}l$ is 139 cm⁻¹. 0.01 cm para than that in t errors were e for them was applied to th relative struc scale was four

STRUCTURE

The berylli symmetry to Group I-41/an not wholly inf method, toge atomic contr mitted the p from electron

7 A. J. C. Wil ⁸ Internationa Press, Birmingh 9 All Fourier were done wit FORDAP-2 wr and R. D. Ellis

[†] Research sponsored by the U.S. Atomic Energy Commission

under contract with the Union Carbide Corporation. ¹ J. L. Hoard and J. V. Silverton, Inorg. Chem. **2**, 235 (1963). ² R. J. H. Clark, D. L. Kepert, and R. S. Nyholm, Nature 199, 559 (1963). ^a G. Racah, J. Chem. Phys. 11, 214 (1943). ^b Chem. Phys. 18, 746, 144

⁴G. H. Duffey, J. Chem. Phys. 18, 746, 1444 (1950).

⁵ J. L. Hoard and H. H. Nordsieck, J. Am. Chem. Soc. 61, 2853

^{(1039).} ⁶ R. E. Thoma *et al.*, U.S. Atomic Energy Commission Report